The brush border cytoskeleton is not static: in vivo turnover of proteins

نویسندگان

  • R P Stidwill
  • T Wysolmerski
  • D R Burgess
چکیده

The shape and stability of intestinal epithelial cell microvilli are maintained by a cytoskeletal core composed of a bundle of actin filaments with several associated proteins. The core filaments are intimately associated with the overlying plasma membrane, in which there occur rapid turnover of proteins and constant incorporation of new membrane. Previous work has shown that starvation or inhibition of protein synthesis results in modulation of microvillar length, which indicates that there may be cytoskeletal protein turnover. We demonstrate herein, by means of in vivo pulse labeling with radioactive amino acids, that turnover of brush border cytoskeletal proteins occurs in mature absorptive cells. Turnover of cytoskeletal proteins appears to be quite slow relative to membrane protein turnover, which suggests that the turnover of these two microvillar compartments is not coupled. We thus conclude that cytoskeletal protein turnover may be a factor used to maintain normal length and stability of microvilli and that the cytoskeleton cannot be considered a static structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brush border cytoskeleton and integration of cellular functions

The primary function of the intestinal epithelial cell is the absorption and transport of nutrients and electrolytes from the lumen of the gut to the organism's blood supply. The absorptive membrane on the lumenal surface ofthe cell-the brush border-has been the subject ofintensive physiological and chemical study . Similarly, the exquisite array of actin filments and associated binding protein...

متن کامل

Molecular Model of the Microvillar Cytoskeleton and Organization of the Brush Border

BACKGROUND Brush border microvilli are approximately 1-microm long finger-like projections emanating from the apical surfaces of certain, specialized absorptive epithelial cells. A highly symmetric hexagonal array of thousands of these uniformly sized structures form the brush border, which in addition to aiding in nutrient absorption also defends the large surface area against pathogens. Here,...

متن کامل

Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury.

Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. ...

متن کامل

An MBoC Favorite: Myosin-1a is critical for normal brush border structure and composition

To develop our understanding of myosin-1a function in vivo, we have created a mouse line null for the myosin-1a gene. Myosin-1a knockout mice demonstrate no overt phenotypes at the whole animal level but exhibit significant perturbations and signs of stress at the cellular level. Among these are defects in microvillar membrane morphology, distinct changes in brush-border organization, loss of n...

متن کامل

Restitution at the cellular level: regulation of the migrating phenotype.

Intestinal epithelial cells migrating across a mucosal defect are generally described as dedifferentiated, a term that suggests a loss of regulatory biology. Since cell biology may be more readily studied in established cell lines than in vivo, a model is developed using the human Caco-2 intestinal epithelial cell migrating across matrix proteins. This resembles in vivo models of mucosal healin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1984